3.160 \(\int \frac{x^7}{3+4 x^3+x^6} \, dx\)

Optimal. Leaf size=119 \[ \frac{x^2}{2}+\frac{1}{12} \log \left (x^2-x+1\right )-\frac{1}{4} 3^{2/3} \log \left (x^2-\sqrt [3]{3} x+3^{2/3}\right )-\frac{1}{6} \log (x+1)+\frac{1}{2} 3^{2/3} \log \left (x+\sqrt [3]{3}\right )-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}+\frac{3}{2} \sqrt [6]{3} \tan ^{-1}\left (\frac{\sqrt [3]{3}-2 x}{3^{5/6}}\right ) \]

[Out]

x^2/2 - ArcTan[(1 - 2*x)/Sqrt[3]]/(2*Sqrt[3]) + (3*3^(1/6)*ArcTan[(3^(1/3) - 2*x)/3^(5/6)])/2 - Log[1 + x]/6 +
 (3^(2/3)*Log[3^(1/3) + x])/2 + Log[1 - x + x^2]/12 - (3^(2/3)*Log[3^(2/3) - 3^(1/3)*x + x^2])/4

________________________________________________________________________________________

Rubi [A]  time = 0.081783, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 9, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.562, Rules used = {1367, 1510, 292, 31, 634, 618, 204, 628, 617} \[ \frac{x^2}{2}+\frac{1}{12} \log \left (x^2-x+1\right )-\frac{1}{4} 3^{2/3} \log \left (x^2-\sqrt [3]{3} x+3^{2/3}\right )-\frac{1}{6} \log (x+1)+\frac{1}{2} 3^{2/3} \log \left (x+\sqrt [3]{3}\right )-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}+\frac{3}{2} \sqrt [6]{3} \tan ^{-1}\left (\frac{\sqrt [3]{3}-2 x}{3^{5/6}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^7/(3 + 4*x^3 + x^6),x]

[Out]

x^2/2 - ArcTan[(1 - 2*x)/Sqrt[3]]/(2*Sqrt[3]) + (3*3^(1/6)*ArcTan[(3^(1/3) - 2*x)/3^(5/6)])/2 - Log[1 + x]/6 +
 (3^(2/3)*Log[3^(1/3) + x])/2 + Log[1 - x + x^2]/12 - (3^(2/3)*Log[3^(2/3) - 3^(1/3)*x + x^2])/4

Rule 1367

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(2*n - 1)*(d*x)
^(m - 2*n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(c*(m + 2*n*p + 1)), x] - Dist[d^(2*n)/(c*(m + 2*n*p + 1)), In
t[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; Fr
eeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n
*p + 1, 0] && IntegerQ[p]

Rule 1510

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{x^7}{3+4 x^3+x^6} \, dx &=\frac{x^2}{2}-\frac{1}{2} \int \frac{x \left (6+8 x^3\right )}{3+4 x^3+x^6} \, dx\\ &=\frac{x^2}{2}+\frac{1}{2} \int \frac{x}{1+x^3} \, dx-\frac{9}{2} \int \frac{x}{3+x^3} \, dx\\ &=\frac{x^2}{2}-\frac{1}{6} \int \frac{1}{1+x} \, dx+\frac{1}{6} \int \frac{1+x}{1-x+x^2} \, dx+\frac{1}{2} 3^{2/3} \int \frac{1}{\sqrt [3]{3}+x} \, dx-\frac{1}{2} 3^{2/3} \int \frac{\sqrt [3]{3}+x}{3^{2/3}-\sqrt [3]{3} x+x^2} \, dx\\ &=\frac{x^2}{2}-\frac{1}{6} \log (1+x)+\frac{1}{2} 3^{2/3} \log \left (\sqrt [3]{3}+x\right )+\frac{1}{12} \int \frac{-1+2 x}{1-x+x^2} \, dx+\frac{1}{4} \int \frac{1}{1-x+x^2} \, dx-\frac{9}{4} \int \frac{1}{3^{2/3}-\sqrt [3]{3} x+x^2} \, dx-\frac{1}{4} 3^{2/3} \int \frac{-\sqrt [3]{3}+2 x}{3^{2/3}-\sqrt [3]{3} x+x^2} \, dx\\ &=\frac{x^2}{2}-\frac{1}{6} \log (1+x)+\frac{1}{2} 3^{2/3} \log \left (\sqrt [3]{3}+x\right )+\frac{1}{12} \log \left (1-x+x^2\right )-\frac{1}{4} 3^{2/3} \log \left (3^{2/3}-\sqrt [3]{3} x+x^2\right )-\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x\right )-\frac{1}{2} \left (3\ 3^{2/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 x}{\sqrt [3]{3}}\right )\\ &=\frac{x^2}{2}-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}+\frac{3}{2} \sqrt [6]{3} \tan ^{-1}\left (\frac{\sqrt [3]{3}-2 x}{3^{5/6}}\right )-\frac{1}{6} \log (1+x)+\frac{1}{2} 3^{2/3} \log \left (\sqrt [3]{3}+x\right )+\frac{1}{12} \log \left (1-x+x^2\right )-\frac{1}{4} 3^{2/3} \log \left (3^{2/3}-\sqrt [3]{3} x+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0273695, size = 111, normalized size = 0.93 \[ \frac{1}{12} \left (6 x^2+\log \left (x^2-x+1\right )-3\ 3^{2/3} \log \left (\sqrt [3]{3} x^2-3^{2/3} x+3\right )-2 \log (x+1)+6\ 3^{2/3} \log \left (3^{2/3} x+3\right )+18 \sqrt [6]{3} \tan ^{-1}\left (\frac{\sqrt [3]{3}-2 x}{3^{5/6}}\right )+2 \sqrt{3} \tan ^{-1}\left (\frac{2 x-1}{\sqrt{3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/(3 + 4*x^3 + x^6),x]

[Out]

(6*x^2 + 18*3^(1/6)*ArcTan[(3^(1/3) - 2*x)/3^(5/6)] + 2*Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] - 2*Log[1 + x] + 6*
3^(2/3)*Log[3 + 3^(2/3)*x] + Log[1 - x + x^2] - 3*3^(2/3)*Log[3 - 3^(2/3)*x + 3^(1/3)*x^2])/12

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 89, normalized size = 0.8 \begin{align*}{\frac{{x}^{2}}{2}}+{\frac{\ln \left ({x}^{2}-x+1 \right ) }{12}}+{\frac{\sqrt{3}}{6}\arctan \left ({\frac{ \left ( 2\,x-1 \right ) \sqrt{3}}{3}} \right ) }+{\frac{{3}^{{\frac{2}{3}}}\ln \left ( \sqrt [3]{3}+x \right ) }{2}}-{\frac{{3}^{{\frac{2}{3}}}\ln \left ({3}^{{\frac{2}{3}}}-\sqrt [3]{3}x+{x}^{2} \right ) }{4}}-{\frac{3\,\sqrt [6]{3}}{2}\arctan \left ({\frac{\sqrt{3}}{3} \left ({\frac{2\,{3}^{2/3}x}{3}}-1 \right ) } \right ) }-{\frac{\ln \left ( 1+x \right ) }{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(x^6+4*x^3+3),x)

[Out]

1/2*x^2+1/12*ln(x^2-x+1)+1/6*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))+1/2*3^(2/3)*ln(3^(1/3)+x)-1/4*3^(2/3)*ln(3^(2
/3)-3^(1/3)*x+x^2)-3/2*3^(1/6)*arctan(1/3*3^(1/2)*(2/3*3^(2/3)*x-1))-1/6*ln(1+x)

________________________________________________________________________________________

Maxima [A]  time = 1.70047, size = 120, normalized size = 1.01 \begin{align*} \frac{1}{2} \, x^{2} - \frac{1}{4} \cdot 3^{\frac{2}{3}} \log \left (x^{2} - 3^{\frac{1}{3}} x + 3^{\frac{2}{3}}\right ) + \frac{1}{2} \cdot 3^{\frac{2}{3}} \log \left (x + 3^{\frac{1}{3}}\right ) + \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) - \frac{3}{2} \cdot 3^{\frac{1}{6}} \arctan \left (\frac{1}{3} \cdot 3^{\frac{1}{6}}{\left (2 \, x - 3^{\frac{1}{3}}\right )}\right ) + \frac{1}{12} \, \log \left (x^{2} - x + 1\right ) - \frac{1}{6} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^6+4*x^3+3),x, algorithm="maxima")

[Out]

1/2*x^2 - 1/4*3^(2/3)*log(x^2 - 3^(1/3)*x + 3^(2/3)) + 1/2*3^(2/3)*log(x + 3^(1/3)) + 1/6*sqrt(3)*arctan(1/3*s
qrt(3)*(2*x - 1)) - 3/2*3^(1/6)*arctan(1/3*3^(1/6)*(2*x - 3^(1/3))) + 1/12*log(x^2 - x + 1) - 1/6*log(x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.52441, size = 327, normalized size = 2.75 \begin{align*} \frac{1}{2} \, x^{2} - \frac{1}{2} \cdot 9^{\frac{1}{3}} \sqrt{3} \arctan \left (\frac{2}{9} \cdot 9^{\frac{1}{3}} \sqrt{3} x - \frac{1}{3} \, \sqrt{3}\right ) + \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) - \frac{1}{4} \cdot 9^{\frac{1}{3}} \log \left (3 \, x^{2} - 9^{\frac{2}{3}} x + 3 \cdot 9^{\frac{1}{3}}\right ) + \frac{1}{2} \cdot 9^{\frac{1}{3}} \log \left (3 \, x + 9^{\frac{2}{3}}\right ) + \frac{1}{12} \, \log \left (x^{2} - x + 1\right ) - \frac{1}{6} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^6+4*x^3+3),x, algorithm="fricas")

[Out]

1/2*x^2 - 1/2*9^(1/3)*sqrt(3)*arctan(2/9*9^(1/3)*sqrt(3)*x - 1/3*sqrt(3)) + 1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*
x - 1)) - 1/4*9^(1/3)*log(3*x^2 - 9^(2/3)*x + 3*9^(1/3)) + 1/2*9^(1/3)*log(3*x + 9^(2/3)) + 1/12*log(x^2 - x +
 1) - 1/6*log(x + 1)

________________________________________________________________________________________

Sympy [C]  time = 0.66824, size = 134, normalized size = 1.13 \begin{align*} \frac{x^{2}}{2} - \frac{\log{\left (x + 1 \right )}}{6} + \left (\frac{1}{12} - \frac{\sqrt{3} i}{12}\right ) \log{\left (x + \frac{6562 \left (\frac{1}{12} - \frac{\sqrt{3} i}{12}\right )^{2}}{183} - \frac{1872 \left (\frac{1}{12} - \frac{\sqrt{3} i}{12}\right )^{5}}{61} \right )} + \left (\frac{1}{12} + \frac{\sqrt{3} i}{12}\right ) \log{\left (x - \frac{1872 \left (\frac{1}{12} + \frac{\sqrt{3} i}{12}\right )^{5}}{61} + \frac{6562 \left (\frac{1}{12} + \frac{\sqrt{3} i}{12}\right )^{2}}{183} \right )} + \operatorname{RootSum}{\left (8 t^{3} - 9, \left ( t \mapsto t \log{\left (- \frac{1872 t^{5}}{61} + \frac{6562 t^{2}}{183} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(x**6+4*x**3+3),x)

[Out]

x**2/2 - log(x + 1)/6 + (1/12 - sqrt(3)*I/12)*log(x + 6562*(1/12 - sqrt(3)*I/12)**2/183 - 1872*(1/12 - sqrt(3)
*I/12)**5/61) + (1/12 + sqrt(3)*I/12)*log(x - 1872*(1/12 + sqrt(3)*I/12)**5/61 + 6562*(1/12 + sqrt(3)*I/12)**2
/183) + RootSum(8*_t**3 - 9, Lambda(_t, _t*log(-1872*_t**5/61 + 6562*_t**2/183 + x)))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^6+4*x^3+3),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError